منابع مشابه
A statistical model for tensor PCA
We consider the Principal Component Analysis problem for large tensors of arbitrary order k under a single-spike (or rank-one plus noise) model. On the one hand, we use information theory, and recent results in probability theory, to establish necessary and sufficient conditions under which the principal component can be estimated using unbounded computational resources. It turns out that this ...
متن کاملHomotopy Analysis for Tensor PCA
Developing efficient and guaranteed nonconvex algorithms has been an important challenge in modern machine learning. Algorithms with good empirical performance such as stochastic gradient descent often lack theoretical guarantees. In this paper, we analyze the class of homotopy or continuation methods for global optimization of nonconvex functions. These methods start from an objective function...
متن کاملCoupling Statistical Segmentation and PCA Shape Modeling
This paper presents a novel segmentation approach featuring shape constraints of multiple structures. A framework is developed combining statistical shape modeling with a maximum a posteriori segmentation problem. The shape is characterized by signed distance maps and its modes of variations are generated through principle component analysis. To solve the maximum a posteriori segmentation probl...
متن کاملStatistical Shape Analysis using Kernel PCA
Mercer kernels are used for a wide range of image and signal processing tasks like de-noising, clustering, discriminant analysis etc. These algorithms construct their solutions in terms of the expansions in a high-dimensional feature space F. However, many applications like kernel PCA (principal component analysis) can be used more effectively if a pre-image of the projection in the feature spa...
متن کاملStatistical Analysis of Tensor Fields
In this paper, we propose a Riemannian framework for statistical analysis of tensor fields. Existing approaches to this problem have been mainly voxel-based that overlook the correlation between tensors at different voxels. In our approach, the tensor fields are considered as points in a high-dimensional Riemannian product space and accordingly, we extend Principal Geodesic Analysis (PGA) to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Probability
سال: 2020
ISSN: 1050-5164
DOI: 10.1214/19-aap1547